mirror of
https://github.com/rendies/People-Counting-in-Real-Time.git
synced 2025-05-14 09:59:29 +07:00
441 lines
14 KiB
Python
441 lines
14 KiB
Python
from mylib.centroidtracker import CentroidTracker
|
|
from mylib.trackableobject import TrackableObject
|
|
from imutils.video import VideoStream
|
|
from imutils.video import FPS
|
|
from mylib.mailer import Mailer
|
|
from mylib import config, thread
|
|
import time, schedule, csv
|
|
import numpy as np
|
|
import argparse, imutils
|
|
import time, dlib, cv2, datetime
|
|
import threading
|
|
from itertools import zip_longest
|
|
from flask import Response
|
|
from flask import Flask
|
|
from flask import jsonify
|
|
from flask_cors import CORS, cross_origin
|
|
import subprocess
|
|
|
|
t0 = time.time()
|
|
|
|
outputFrame = None
|
|
people_count = 0
|
|
lock = threading.Lock()
|
|
# initialize a flask object
|
|
app = Flask(__name__)
|
|
cors = CORS(app)
|
|
app.config['CORS_HEADERS'] = 'Content-Type'
|
|
args = None
|
|
|
|
@app.route("/counter")
|
|
@cross_origin()
|
|
def counter():
|
|
# return the rendered template
|
|
global people_count
|
|
return jsonify([ 1000, 980, 700, 500, 670, 567, people_count ])
|
|
|
|
# @app.route("/video")
|
|
# @cross_origin()
|
|
# def video_feed():
|
|
# # return the response generated along with the specific media
|
|
# # type (mime type)
|
|
# return Response(generate(),
|
|
# mimetype = "multipart/x-mixed-replace; boundary=frame")
|
|
|
|
def open_ffmpeg_stream_process(height, width):
|
|
# args = (
|
|
# "ffmpeg -re -stream_loop -1 -f rawvideo -pix_fmt "
|
|
# "rgb24 -s 1920x1080 -i pipe:0 -pix_fmt yuv420p "
|
|
# "-f rtsp rtsp://172.23.90.205:8554/stream"
|
|
# ).split()
|
|
args = (
|
|
"ffmpeg -re -stream_loop -1 -f rawvideo -vcodec rawvideo -pix_fmt "
|
|
"rgb24 -s " + str(width) + "x" + str(height) + " -i pipe:0 -pix_fmt nv12 "
|
|
"-c:v libx264 -preset fast -crf 22 -bf 0 "
|
|
"-f rtsp -rtsp_transport tcp rtsp://172.17.2.39/counter"
|
|
|
|
).split()
|
|
return subprocess.Popen(args, stdin=subprocess.PIPE)
|
|
|
|
def PeopleCounter():
|
|
global outputFrame, lock, people_count
|
|
# construct the argument parse and parse the arguments
|
|
# ap = argparse.ArgumentParser()
|
|
# ap.add_argument("-p", "--prototxt", required=False,
|
|
# help="path to Caffe 'deploy' prototxt file")
|
|
# ap.add_argument("-m", "--model", required=True,
|
|
# help="path to Caffe pre-trained model")
|
|
# ap.add_argument("-i", "--input", type=str,
|
|
# help="path to optional input video file")
|
|
# ap.add_argument("-o", "--output", type=str,
|
|
# help="path to optional output video file")
|
|
# # confidence default 0.4
|
|
# ap.add_argument("-c", "--confidence", type=float, default=0.4,
|
|
# help="minimum probability to filter weak detections")
|
|
# ap.add_argument("-s", "--skip-frames", type=int, default=30,
|
|
# help="# of skip frames between detections")
|
|
# args = vars(ap.parse_args())
|
|
|
|
# initialize the list of class labels MobileNet SSD was trained to
|
|
# detect
|
|
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
|
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
|
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
|
"sofa", "train", "tvmonitor"]
|
|
|
|
# load our serialized model from disk
|
|
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
|
|
|
|
# if a video path was not supplied, grab a reference to the ip camera
|
|
if not args.get("input", False):
|
|
print("[INFO] Starting the live stream..")
|
|
vs = VideoStream(config.url).start()
|
|
time.sleep(2.0)
|
|
|
|
# otherwise, grab a reference to the video file
|
|
else:
|
|
print("[INFO] Starting the video..")
|
|
vs = cv2.VideoCapture(args["input"])
|
|
|
|
# initialize the video writer (we'll instantiate later if need be)
|
|
writer = None
|
|
|
|
# initialize the frame dimensions (we'll set them as soon as we read
|
|
# the first frame from the video)
|
|
W = None
|
|
H = None
|
|
|
|
# instantiate our centroid tracker, then initialize a list to store
|
|
# each of our dlib correlation trackers, followed by a dictionary to
|
|
# map each unique object ID to a TrackableObject
|
|
ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
|
|
trackers = []
|
|
trackableObjects = {}
|
|
|
|
# initialize the total number of frames processed thus far, along
|
|
# with the total number of objects that have moved either up or down
|
|
totalFrames = 0
|
|
totalDown = 0
|
|
totalUp = 0
|
|
x = []
|
|
empty=[]
|
|
empty1=[]
|
|
|
|
# start the frames per second throughput estimator
|
|
fps = FPS().start()
|
|
|
|
if config.Thread:
|
|
vs = thread.ThreadingClass(config.url)
|
|
ffmpeg_process = open_ffmpeg_stream_process(1920, 1080)
|
|
# loop over frames from the video stream
|
|
while True:
|
|
# grab the next frame and handle if we are reading from either
|
|
# VideoCapture or VideoStream
|
|
frame = vs.read()
|
|
frame = frame[1] if args.get("input", False) else frame
|
|
|
|
# if we are viewing a video and we did not grab a frame then we
|
|
# have reached the end of the video
|
|
if args["input"] is not None and frame is None:
|
|
break
|
|
|
|
# resize the frame to have a maximum width of 500 pixels (the
|
|
# less data we have, the faster we can process it), then convert
|
|
# the frame from BGR to RGB for dlib
|
|
frame = imutils.resize(frame, width = 500)
|
|
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
# if the frame dimensions are empty, set them
|
|
if W is None or H is None:
|
|
(H, W) = frame.shape[:2]
|
|
|
|
# if we are supposed to be writing a video to disk, initialize
|
|
# the writer
|
|
if args["output"] is not None and writer is None:
|
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
|
writer = cv2.VideoWriter(args["output"], fourcc, 30,
|
|
(W, H), True)
|
|
|
|
# initialize the current status along with our list of bounding
|
|
# box rectangles returned by either (1) our object detector or
|
|
# (2) the correlation trackers
|
|
status = "Waiting"
|
|
rects = []
|
|
|
|
# check to see if we should run a more computationally expensive
|
|
# object detection method to aid our tracker
|
|
if totalFrames % args["skip_frames"] == 0:
|
|
# set the status and initialize our new set of object trackers
|
|
status = "Detecting"
|
|
trackers = []
|
|
|
|
# convert the frame to a blob and pass the blob through the
|
|
# network and obtain the detections
|
|
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
|
net.setInput(blob)
|
|
detections = net.forward()
|
|
|
|
# loop over the detections
|
|
for i in np.arange(0, detections.shape[2]):
|
|
# extract the confidence (i.e., probability) associated
|
|
# with the prediction
|
|
confidence = detections[0, 0, i, 2]
|
|
|
|
# filter out weak detections by requiring a minimum
|
|
# confidence
|
|
if confidence > args["confidence"]:
|
|
# extract the index of the class label from the
|
|
# detections list
|
|
idx = int(detections[0, 0, i, 1])
|
|
|
|
# if the class label is not a person, ignore it
|
|
if CLASSES[idx] != "person":
|
|
continue
|
|
|
|
# compute the (x, y)-coordinates of the bounding box
|
|
# for the object
|
|
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
|
(startX, startY, endX, endY) = box.astype("int")
|
|
|
|
|
|
# construct a dlib rectangle object from the bounding
|
|
# box coordinates and then start the dlib correlation
|
|
# tracker
|
|
tracker = dlib.correlation_tracker()
|
|
rect = dlib.rectangle(startX, startY, endX, endY)
|
|
tracker.start_track(rgb, rect)
|
|
|
|
# add the tracker to our list of trackers so we can
|
|
# utilize it during skip frames
|
|
trackers.append(tracker)
|
|
|
|
# otherwise, we should utilize our object *trackers* rather than
|
|
# object *detectors* to obtain a higher frame processing throughput
|
|
else:
|
|
# loop over the trackers
|
|
for tracker in trackers:
|
|
# set the status of our system to be 'tracking' rather
|
|
# than 'waiting' or 'detecting'
|
|
status = "Tracking"
|
|
|
|
# update the tracker and grab the updated position
|
|
tracker.update(rgb)
|
|
pos = tracker.get_position()
|
|
|
|
# unpack the position object
|
|
startX = int(pos.left())
|
|
startY = int(pos.top())
|
|
endX = int(pos.right())
|
|
endY = int(pos.bottom())
|
|
|
|
# add the bounding box coordinates to the rectangles list
|
|
rects.append((startX, startY, endX, endY))
|
|
|
|
# draw a horizontal line in the center of the frame -- once an
|
|
# object crosses this line we will determine whether they were
|
|
# moving 'up' or 'down'
|
|
cv2.line(frame, (0, H // 2), (W, H // 2), (0, 0, 0), 3)
|
|
cv2.putText(frame, "-Prediction border - Entrance-", (10, H - ((i * 20) + 200)),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
|
|
|
|
# use the centroid tracker to associate the (1) old object
|
|
# centroids with (2) the newly computed object centroids
|
|
objects = ct.update(rects)
|
|
|
|
# loop over the tracked objects
|
|
for (objectID, centroid) in objects.items():
|
|
# check to see if a trackable object exists for the current
|
|
# object ID
|
|
to = trackableObjects.get(objectID, None)
|
|
|
|
# if there is no existing trackable object, create one
|
|
if to is None:
|
|
to = TrackableObject(objectID, centroid)
|
|
|
|
# otherwise, there is a trackable object so we can utilize it
|
|
# to determine direction
|
|
else:
|
|
# the difference between the y-coordinate of the *current*
|
|
# centroid and the mean of *previous* centroids will tell
|
|
# us in which direction the object is moving (negative for
|
|
# 'up' and positive for 'down')
|
|
y = [c[1] for c in to.centroids]
|
|
direction = centroid[1] - np.mean(y)
|
|
to.centroids.append(centroid)
|
|
|
|
# check to see if the object has been counted or not
|
|
if not to.counted:
|
|
# if the direction is negative (indicating the object
|
|
# is moving up) AND the centroid is above the center
|
|
# line, count the object
|
|
if direction < 0 and centroid[1] < H // 2:
|
|
totalUp += 1
|
|
empty.append(totalUp)
|
|
to.counted = True
|
|
|
|
# if the direction is positive (indicating the object
|
|
# is moving down) AND the centroid is below the
|
|
# center line, count the object
|
|
elif direction > 0 and centroid[1] > H // 2:
|
|
totalDown += 1
|
|
empty1.append(totalDown)
|
|
#print(empty1[-1])
|
|
# if the people limit exceeds over threshold, send an email alert
|
|
if sum(x) >= config.Threshold:
|
|
cv2.putText(frame, "-ALERT: People limit exceeded-", (10, frame.shape[0] - 80),
|
|
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 2)
|
|
if config.ALERT:
|
|
print("[INFO] Sending email alert..")
|
|
Mailer().send(config.MAIL)
|
|
print("[INFO] Alert sent")
|
|
|
|
to.counted = True
|
|
|
|
x = []
|
|
# compute the sum of total people inside
|
|
x.append(len(empty1)-len(empty))
|
|
#print("Total people inside:", x)
|
|
|
|
|
|
# store the trackable object in our dictionary
|
|
trackableObjects[objectID] = to
|
|
|
|
# draw both the ID of the object and the centroid of the
|
|
# object on the output frame
|
|
text = "ID {}".format(objectID)
|
|
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
|
|
cv2.circle(frame, (centroid[0], centroid[1]), 4, (255, 255, 255), -1)
|
|
people_count = totalDown
|
|
# construct a tuple of information we will be displaying on the
|
|
info = [
|
|
("Exit", totalUp),
|
|
("Enter", totalDown),
|
|
("Status", status),
|
|
]
|
|
|
|
info2 = [
|
|
("Total people inside", x),
|
|
]
|
|
|
|
# Display the output
|
|
for (i, (k, v)) in enumerate(info):
|
|
text = "{}: {}".format(k, v)
|
|
cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
|
|
|
|
for (i, (k, v)) in enumerate(info2):
|
|
text = "{}: {}".format(k, v)
|
|
cv2.putText(frame, text, (265, H - ((i * 20) + 60)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
|
|
|
# Initiate a simple log to save data at end of the day
|
|
if config.Log:
|
|
datetimee = [datetime.datetime.now()]
|
|
d = [datetimee, empty1, empty, x]
|
|
export_data = zip_longest(*d, fillvalue = '')
|
|
|
|
with open('Log.csv', 'w', newline='') as myfile:
|
|
wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
|
|
wr.writerow(("End Time", "In", "Out", "Total Inside"))
|
|
wr.writerows(export_data)
|
|
|
|
# check to see if we should write the frame to disk
|
|
if writer is not None:
|
|
writer.write(frame)
|
|
|
|
# show the output frame
|
|
# with lock:
|
|
ffmpeg_process.stdin.write(frame.astype(np.uint8).tobytes())
|
|
|
|
# outputFrame = frame.copy()
|
|
# cv2.imshow("Real-Time Monitoring/Analysis Window", frame)
|
|
key = cv2.waitKey(1) & 0xFF
|
|
|
|
# if the `q` key was pressed, break from the loop
|
|
if key == ord("q"):
|
|
break
|
|
|
|
# increment the total number of frames processed thus far and
|
|
# then update the FPS counter
|
|
totalFrames += 1
|
|
fps.update()
|
|
|
|
if config.Timer:
|
|
# Automatic timer to stop the live stream. Set to 8 hours (28800s).
|
|
t1 = time.time()
|
|
num_seconds=(t1-t0)
|
|
if num_seconds > 28800:
|
|
break
|
|
|
|
# stop the timer and display FPS information
|
|
# fps.stop()
|
|
# print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
|
|
# print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
|
|
|
|
|
|
# # if we are not using a video file, stop the camera video stream
|
|
if not args.get("input", False):
|
|
vs.stop()
|
|
#
|
|
# # otherwise, release the video file pointer
|
|
# else:
|
|
# vs.release()
|
|
|
|
# issue 15
|
|
if config.Thread:
|
|
vs.release()
|
|
|
|
# close any open windows
|
|
cv2.destroyAllWindows()
|
|
|
|
def generate():
|
|
# grab global references to the output frame and lock variables
|
|
global outputFrame, lock
|
|
# loop over frames from the output stream
|
|
while True:
|
|
# wait until the lock is acquired
|
|
with lock:
|
|
# check if the output frame is available, otherwise skip
|
|
# the iteration of the loop
|
|
if outputFrame is None:
|
|
continue
|
|
# encode the frame in JPEG format
|
|
(flag, encodedImage) = cv2.imencode(".jpg", outputFrame)
|
|
# ensure the frame was successfully encoded
|
|
if not flag:
|
|
continue
|
|
# yield the output frame in the byte format
|
|
yield(b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +
|
|
bytearray(encodedImage) + b'\r\n')
|
|
|
|
|
|
|
|
# check to see if this is the main thread of execution
|
|
if __name__ == '__main__':
|
|
# construct the argument parser and parse command line arguments
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("-t", "--ip", type=str, default="0.0.0.0",
|
|
help="ip address of the device")
|
|
ap.add_argument("-u", "--port", type=int, default=8081,
|
|
help="ephemeral port number of the server (1024 to 65535)")
|
|
ap.add_argument("-p", "--prototxt", required=False,
|
|
help="path to Caffe 'deploy' prototxt file")
|
|
ap.add_argument("-m", "--model", required=True,
|
|
help="path to Caffe pre-trained model")
|
|
ap.add_argument("-i", "--input", type=str,
|
|
help="path to optional input video file")
|
|
ap.add_argument("-o", "--output", type=str,
|
|
help="path to optional output video file")
|
|
# confidence default 0.4
|
|
ap.add_argument("-c", "--confidence", type=float, default=0.4,
|
|
help="minimum probability to filter weak detections")
|
|
ap.add_argument("-s", "--skip-frames", type=int, default=30,
|
|
help="# of skip frames between detections")
|
|
args = vars(ap.parse_args())
|
|
# start a thread that will perform motion detection
|
|
t = threading.Thread(target=PeopleCounter)
|
|
t.daemon = True
|
|
t.start()
|
|
# start the flask app
|
|
app.run(host=args["ip"], port=args["port"], debug=False,
|
|
threaded=True, use_reloader=False)
|