People-Counting-in-Real-Time/RunCounting.py
2023-01-18 16:47:12 +07:00

441 lines
14 KiB
Python

from mylib.centroidtracker import CentroidTracker
from mylib.trackableobject import TrackableObject
from imutils.video import VideoStream
from imutils.video import FPS
from mylib.mailer import Mailer
from mylib import config, thread
import time, schedule, csv
import numpy as np
import argparse, imutils
import time, dlib, cv2, datetime
import threading
from itertools import zip_longest
from flask import Response
from flask import Flask
from flask import jsonify
from flask_cors import CORS, cross_origin
t0 = time.time()
outputFrame = None
people_count = 0
lock = threading.Lock()
# initialize a flask object
app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
args = None
@app.route("/counter")
@cross_origin()
def counter():
# return the rendered template
global people_count
return jsonify([ 1000, 980, 700, 500, 670, 567, people_count ])
@app.route("/video")
@cross_origin()
def video_feed():
# return the response generated along with the specific media
# type (mime type)
return Response(generate(),
mimetype = "multipart/x-mixed-replace; boundary=frame")
def open_ffmpeg_stream_process(height, width):
# args = (
# "ffmpeg -re -stream_loop -1 -f rawvideo -pix_fmt "
# "rgb24 -s 1920x1080 -i pipe:0 -pix_fmt yuv420p "
# "-f rtsp rtsp://172.23.90.205:8554/stream"
# ).split()
args = (
"ffmpeg -re -stream_loop -1 -f rawvideo -vcodec rawvideo -pix_fmt "
"rgb24 -s " + str(width) + "x" + str(height) + " -i pipe:0 -pix_fmt nv12 "
"-c:v libx264 -preset fast -crf 22 -bf 0 "
"-f rtsp -rtsp_transport tcp rtsp://172.17.2.39/counter"
).split()
return subprocess.Popen(args, stdin=subprocess.PIPE)
def PeopleCounter():
global outputFrame, lock, people_count
# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-p", "--prototxt", required=False,
# help="path to Caffe 'deploy' prototxt file")
# ap.add_argument("-m", "--model", required=True,
# help="path to Caffe pre-trained model")
# ap.add_argument("-i", "--input", type=str,
# help="path to optional input video file")
# ap.add_argument("-o", "--output", type=str,
# help="path to optional output video file")
# # confidence default 0.4
# ap.add_argument("-c", "--confidence", type=float, default=0.4,
# help="minimum probability to filter weak detections")
# ap.add_argument("-s", "--skip-frames", type=int, default=30,
# help="# of skip frames between detections")
# args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
# load our serialized model from disk
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# if a video path was not supplied, grab a reference to the ip camera
if not args.get("input", False):
print("[INFO] Starting the live stream..")
vs = VideoStream(config.url).start()
time.sleep(2.0)
# otherwise, grab a reference to the video file
else:
print("[INFO] Starting the video..")
vs = cv2.VideoCapture(args["input"])
# initialize the video writer (we'll instantiate later if need be)
writer = None
# initialize the frame dimensions (we'll set them as soon as we read
# the first frame from the video)
W = None
H = None
# instantiate our centroid tracker, then initialize a list to store
# each of our dlib correlation trackers, followed by a dictionary to
# map each unique object ID to a TrackableObject
ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
trackers = []
trackableObjects = {}
# initialize the total number of frames processed thus far, along
# with the total number of objects that have moved either up or down
totalFrames = 0
totalDown = 0
totalUp = 0
x = []
empty=[]
empty1=[]
# start the frames per second throughput estimator
fps = FPS().start()
if config.Thread:
vs = thread.ThreadingClass(config.url)
ret, frame = vs.read()
height, width, ch = frame.shape
ffmpeg_process = open_ffmpeg_stream_process(height, width)
# loop over frames from the video stream
while True:
# grab the next frame and handle if we are reading from either
# VideoCapture or VideoStream
frame = vs.read()
frame = frame[1] if args.get("input", False) else frame
# if we are viewing a video and we did not grab a frame then we
# have reached the end of the video
if args["input"] is not None and frame is None:
break
# resize the frame to have a maximum width of 500 pixels (the
# less data we have, the faster we can process it), then convert
# the frame from BGR to RGB for dlib
frame = imutils.resize(frame, width = 500)
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# if the frame dimensions are empty, set them
if W is None or H is None:
(H, W) = frame.shape[:2]
# if we are supposed to be writing a video to disk, initialize
# the writer
if args["output"] is not None and writer is None:
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
writer = cv2.VideoWriter(args["output"], fourcc, 30,
(W, H), True)
# initialize the current status along with our list of bounding
# box rectangles returned by either (1) our object detector or
# (2) the correlation trackers
status = "Waiting"
rects = []
# check to see if we should run a more computationally expensive
# object detection method to aid our tracker
if totalFrames % args["skip_frames"] == 0:
# set the status and initialize our new set of object trackers
status = "Detecting"
trackers = []
# convert the frame to a blob and pass the blob through the
# network and obtain the detections
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated
# with the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by requiring a minimum
# confidence
if confidence > args["confidence"]:
# extract the index of the class label from the
# detections list
idx = int(detections[0, 0, i, 1])
# if the class label is not a person, ignore it
if CLASSES[idx] != "person":
continue
# compute the (x, y)-coordinates of the bounding box
# for the object
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = box.astype("int")
# construct a dlib rectangle object from the bounding
# box coordinates and then start the dlib correlation
# tracker
tracker = dlib.correlation_tracker()
rect = dlib.rectangle(startX, startY, endX, endY)
tracker.start_track(rgb, rect)
# add the tracker to our list of trackers so we can
# utilize it during skip frames
trackers.append(tracker)
# otherwise, we should utilize our object *trackers* rather than
# object *detectors* to obtain a higher frame processing throughput
else:
# loop over the trackers
for tracker in trackers:
# set the status of our system to be 'tracking' rather
# than 'waiting' or 'detecting'
status = "Tracking"
# update the tracker and grab the updated position
tracker.update(rgb)
pos = tracker.get_position()
# unpack the position object
startX = int(pos.left())
startY = int(pos.top())
endX = int(pos.right())
endY = int(pos.bottom())
# add the bounding box coordinates to the rectangles list
rects.append((startX, startY, endX, endY))
# draw a horizontal line in the center of the frame -- once an
# object crosses this line we will determine whether they were
# moving 'up' or 'down'
cv2.line(frame, (0, H // 2), (W, H // 2), (0, 0, 0), 3)
cv2.putText(frame, "-Prediction border - Entrance-", (10, H - ((i * 20) + 200)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
# use the centroid tracker to associate the (1) old object
# centroids with (2) the newly computed object centroids
objects = ct.update(rects)
# loop over the tracked objects
for (objectID, centroid) in objects.items():
# check to see if a trackable object exists for the current
# object ID
to = trackableObjects.get(objectID, None)
# if there is no existing trackable object, create one
if to is None:
to = TrackableObject(objectID, centroid)
# otherwise, there is a trackable object so we can utilize it
# to determine direction
else:
# the difference between the y-coordinate of the *current*
# centroid and the mean of *previous* centroids will tell
# us in which direction the object is moving (negative for
# 'up' and positive for 'down')
y = [c[1] for c in to.centroids]
direction = centroid[1] - np.mean(y)
to.centroids.append(centroid)
# check to see if the object has been counted or not
if not to.counted:
# if the direction is negative (indicating the object
# is moving up) AND the centroid is above the center
# line, count the object
if direction < 0 and centroid[1] < H // 2:
totalUp += 1
empty.append(totalUp)
to.counted = True
# if the direction is positive (indicating the object
# is moving down) AND the centroid is below the
# center line, count the object
elif direction > 0 and centroid[1] > H // 2:
totalDown += 1
empty1.append(totalDown)
#print(empty1[-1])
# if the people limit exceeds over threshold, send an email alert
if sum(x) >= config.Threshold:
cv2.putText(frame, "-ALERT: People limit exceeded-", (10, frame.shape[0] - 80),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 2)
if config.ALERT:
print("[INFO] Sending email alert..")
Mailer().send(config.MAIL)
print("[INFO] Alert sent")
to.counted = True
x = []
# compute the sum of total people inside
x.append(len(empty1)-len(empty))
#print("Total people inside:", x)
# store the trackable object in our dictionary
trackableObjects[objectID] = to
# draw both the ID of the object and the centroid of the
# object on the output frame
text = "ID {}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (255, 255, 255), -1)
people_count = totalDown
# construct a tuple of information we will be displaying on the
info = [
("Exit", totalUp),
("Enter", totalDown),
("Status", status),
]
info2 = [
("Total people inside", x),
]
# Display the output
for (i, (k, v)) in enumerate(info):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 0), 2)
for (i, (k, v)) in enumerate(info2):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (265, H - ((i * 20) + 60)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
# Initiate a simple log to save data at end of the day
if config.Log:
datetimee = [datetime.datetime.now()]
d = [datetimee, empty1, empty, x]
export_data = zip_longest(*d, fillvalue = '')
with open('Log.csv', 'w', newline='') as myfile:
wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
wr.writerow(("End Time", "In", "Out", "Total Inside"))
wr.writerows(export_data)
# check to see if we should write the frame to disk
if writer is not None:
writer.write(frame)
# show the output frame
with lock:
ffmpeg_process.stdin.write(frame.astype(np.uint8).tobytes())
# outputFrame = frame.copy()
# cv2.imshow("Real-Time Monitoring/Analysis Window", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# increment the total number of frames processed thus far and
# then update the FPS counter
totalFrames += 1
fps.update()
if config.Timer:
# Automatic timer to stop the live stream. Set to 8 hours (28800s).
t1 = time.time()
num_seconds=(t1-t0)
if num_seconds > 28800:
break
# stop the timer and display FPS information
# fps.stop()
# print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
# print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# # if we are not using a video file, stop the camera video stream
if not args.get("input", False):
vs.stop()
#
# # otherwise, release the video file pointer
# else:
# vs.release()
# issue 15
if config.Thread:
vs.release()
# close any open windows
cv2.destroyAllWindows()
def generate():
# grab global references to the output frame and lock variables
global outputFrame, lock
# loop over frames from the output stream
while True:
# wait until the lock is acquired
with lock:
# check if the output frame is available, otherwise skip
# the iteration of the loop
if outputFrame is None:
continue
# encode the frame in JPEG format
(flag, encodedImage) = cv2.imencode(".jpg", outputFrame)
# ensure the frame was successfully encoded
if not flag:
continue
# yield the output frame in the byte format
yield(b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' +
bytearray(encodedImage) + b'\r\n')
# check to see if this is the main thread of execution
if __name__ == '__main__':
# construct the argument parser and parse command line arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--ip", type=str, default="0.0.0.0",
help="ip address of the device")
ap.add_argument("-u", "--port", type=int, default=8081,
help="ephemeral port number of the server (1024 to 65535)")
ap.add_argument("-p", "--prototxt", required=False,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-i", "--input", type=str,
help="path to optional input video file")
ap.add_argument("-o", "--output", type=str,
help="path to optional output video file")
# confidence default 0.4
ap.add_argument("-c", "--confidence", type=float, default=0.4,
help="minimum probability to filter weak detections")
ap.add_argument("-s", "--skip-frames", type=int, default=30,
help="# of skip frames between detections")
args = vars(ap.parse_args())
# start a thread that will perform motion detection
t = threading.Thread(target=PeopleCounter)
t.daemon = True
t.start()
# start the flask app
app.run(host=args["ip"], port=args["port"], debug=False,
threaded=True, use_reloader=False)