mirror of
				https://github.com/rendies/People-Counting-in-Real-Time.git
				synced 2025-10-31 12:23:04 +07:00 
			
		
		
		
	
		
			
				
	
	
		
			1913 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1913 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| name: "MobileNet-SSD"
 | |
| input: "data"
 | |
| input_shape {
 | |
|   dim: 1
 | |
|   dim: 3
 | |
|   dim: 300
 | |
|   dim: 300
 | |
| }
 | |
| layer {
 | |
|   name: "conv0"
 | |
|   type: "Convolution"
 | |
|   bottom: "data"
 | |
|   top: "conv0"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 32
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv0/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv0"
 | |
|   top: "conv0"
 | |
| }
 | |
| layer {
 | |
|   name: "conv1/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv0"
 | |
|   top: "conv1/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 32
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 32
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv1/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv1/dw"
 | |
|   top: "conv1/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv1"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv1/dw"
 | |
|   top: "conv1"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 64
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv1/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv1"
 | |
|   top: "conv1"
 | |
| }
 | |
| layer {
 | |
|   name: "conv2/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv1"
 | |
|   top: "conv2/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 64
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     group: 64
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv2/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv2/dw"
 | |
|   top: "conv2/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv2"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv2/dw"
 | |
|   top: "conv2"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 128
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv2/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv2"
 | |
|   top: "conv2"
 | |
| }
 | |
| layer {
 | |
|   name: "conv3/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv2"
 | |
|   top: "conv3/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 128
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 128
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv3/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv3/dw"
 | |
|   top: "conv3/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv3"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv3/dw"
 | |
|   top: "conv3"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 128
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv3/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv3"
 | |
|   top: "conv3"
 | |
| }
 | |
| layer {
 | |
|   name: "conv4/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv3"
 | |
|   top: "conv4/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 128
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     group: 128
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv4/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv4/dw"
 | |
|   top: "conv4/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv4"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv4/dw"
 | |
|   top: "conv4"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 256
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv4/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv4"
 | |
|   top: "conv4"
 | |
| }
 | |
| layer {
 | |
|   name: "conv5/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv4"
 | |
|   top: "conv5/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 256
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 256
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv5/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv5/dw"
 | |
|   top: "conv5/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv5"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv5/dw"
 | |
|   top: "conv5"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 256
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv5/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv5"
 | |
|   top: "conv5"
 | |
| }
 | |
| layer {
 | |
|   name: "conv6/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv5"
 | |
|   top: "conv6/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 256
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     group: 256
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv6/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv6/dw"
 | |
|   top: "conv6/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv6"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv6/dw"
 | |
|   top: "conv6"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv6/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv6"
 | |
|   top: "conv6"
 | |
| }
 | |
| layer {
 | |
|   name: "conv7/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv6"
 | |
|   top: "conv7/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 512
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv7/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv7/dw"
 | |
|   top: "conv7/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv7"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv7/dw"
 | |
|   top: "conv7"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv7/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv7"
 | |
|   top: "conv7"
 | |
| }
 | |
| layer {
 | |
|   name: "conv8/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv7"
 | |
|   top: "conv8/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 512
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv8/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv8/dw"
 | |
|   top: "conv8/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv8"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv8/dw"
 | |
|   top: "conv8"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv8/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv8"
 | |
|   top: "conv8"
 | |
| }
 | |
| layer {
 | |
|   name: "conv9/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv8"
 | |
|   top: "conv9/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 512
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv9/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv9/dw"
 | |
|   top: "conv9/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv9"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv9/dw"
 | |
|   top: "conv9"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv9/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv9"
 | |
|   top: "conv9"
 | |
| }
 | |
| layer {
 | |
|   name: "conv10/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv9"
 | |
|   top: "conv10/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 512
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv10/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv10/dw"
 | |
|   top: "conv10/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv10"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv10/dw"
 | |
|   top: "conv10"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv10/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv10"
 | |
|   top: "conv10"
 | |
| }
 | |
| layer {
 | |
|   name: "conv11/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv10"
 | |
|   top: "conv11/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 512
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv11/dw"
 | |
|   top: "conv11/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv11"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv11/dw"
 | |
|   top: "conv11"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv11"
 | |
|   top: "conv11"
 | |
| }
 | |
| layer {
 | |
|   name: "conv12/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv11"
 | |
|   top: "conv12/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     group: 512
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv12/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv12/dw"
 | |
|   top: "conv12/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv12"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv12/dw"
 | |
|   top: "conv12"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 1024
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv12/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv12"
 | |
|   top: "conv12"
 | |
| }
 | |
| layer {
 | |
|   name: "conv13/dw"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv12"
 | |
|   top: "conv13/dw"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 1024
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     group: 1024
 | |
|     engine: CAFFE
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13/dw/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv13/dw"
 | |
|   top: "conv13/dw"
 | |
| }
 | |
| layer {
 | |
|   name: "conv13"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv13/dw"
 | |
|   top: "conv13"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 1024
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv13"
 | |
|   top: "conv13"
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_1"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv13"
 | |
|   top: "conv14_1"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 256
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_1/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv14_1"
 | |
|   top: "conv14_1"
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv14_1"
 | |
|   top: "conv14_2"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 512
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv14_2"
 | |
|   top: "conv14_2"
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_1"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv14_2"
 | |
|   top: "conv15_1"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 128
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_1/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv15_1"
 | |
|   top: "conv15_1"
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv15_1"
 | |
|   top: "conv15_2"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 256
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv15_2"
 | |
|   top: "conv15_2"
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_1"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv15_2"
 | |
|   top: "conv16_1"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 128
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_1/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv16_1"
 | |
|   top: "conv16_1"
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv16_1"
 | |
|   top: "conv16_2"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 256
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv16_2"
 | |
|   top: "conv16_2"
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_1"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv16_2"
 | |
|   top: "conv17_1"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 64
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_1/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv17_1"
 | |
|   top: "conv17_1"
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv17_1"
 | |
|   top: "conv17_2"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 128
 | |
|     pad: 1
 | |
|     kernel_size: 3
 | |
|     stride: 2
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2/relu"
 | |
|   type: "ReLU"
 | |
|   bottom: "conv17_2"
 | |
|   top: "conv17_2"
 | |
| }
 | |
| layer {
 | |
|   name: "conv11_mbox_loc"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv11"
 | |
|   top: "conv11_mbox_loc"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 12
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11_mbox_loc_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv11_mbox_loc"
 | |
|   top: "conv11_mbox_loc_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11_mbox_loc_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv11_mbox_loc_perm"
 | |
|   top: "conv11_mbox_loc_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11_mbox_conf"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv11"
 | |
|   top: "conv11_mbox_conf"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 63
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11_mbox_conf_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv11_mbox_conf"
 | |
|   top: "conv11_mbox_conf_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11_mbox_conf_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv11_mbox_conf_perm"
 | |
|   top: "conv11_mbox_conf_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv11_mbox_priorbox"
 | |
|   type: "PriorBox"
 | |
|   bottom: "conv11"
 | |
|   bottom: "data"
 | |
|   top: "conv11_mbox_priorbox"
 | |
|   prior_box_param {
 | |
|     min_size: 60.0
 | |
|     aspect_ratio: 2.0
 | |
|     flip: true
 | |
|     clip: false
 | |
|     variance: 0.1
 | |
|     variance: 0.1
 | |
|     variance: 0.2
 | |
|     variance: 0.2
 | |
|     offset: 0.5
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13_mbox_loc"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv13"
 | |
|   top: "conv13_mbox_loc"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 24
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13_mbox_loc_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv13_mbox_loc"
 | |
|   top: "conv13_mbox_loc_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13_mbox_loc_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv13_mbox_loc_perm"
 | |
|   top: "conv13_mbox_loc_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13_mbox_conf"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv13"
 | |
|   top: "conv13_mbox_conf"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 126
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13_mbox_conf_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv13_mbox_conf"
 | |
|   top: "conv13_mbox_conf_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13_mbox_conf_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv13_mbox_conf_perm"
 | |
|   top: "conv13_mbox_conf_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv13_mbox_priorbox"
 | |
|   type: "PriorBox"
 | |
|   bottom: "conv13"
 | |
|   bottom: "data"
 | |
|   top: "conv13_mbox_priorbox"
 | |
|   prior_box_param {
 | |
|     min_size: 105.0
 | |
|     max_size: 150.0
 | |
|     aspect_ratio: 2.0
 | |
|     aspect_ratio: 3.0
 | |
|     flip: true
 | |
|     clip: false
 | |
|     variance: 0.1
 | |
|     variance: 0.1
 | |
|     variance: 0.2
 | |
|     variance: 0.2
 | |
|     offset: 0.5
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2_mbox_loc"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv14_2"
 | |
|   top: "conv14_2_mbox_loc"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 24
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2_mbox_loc_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv14_2_mbox_loc"
 | |
|   top: "conv14_2_mbox_loc_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2_mbox_loc_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv14_2_mbox_loc_perm"
 | |
|   top: "conv14_2_mbox_loc_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2_mbox_conf"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv14_2"
 | |
|   top: "conv14_2_mbox_conf"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 126
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2_mbox_conf_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv14_2_mbox_conf"
 | |
|   top: "conv14_2_mbox_conf_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2_mbox_conf_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv14_2_mbox_conf_perm"
 | |
|   top: "conv14_2_mbox_conf_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv14_2_mbox_priorbox"
 | |
|   type: "PriorBox"
 | |
|   bottom: "conv14_2"
 | |
|   bottom: "data"
 | |
|   top: "conv14_2_mbox_priorbox"
 | |
|   prior_box_param {
 | |
|     min_size: 150.0
 | |
|     max_size: 195.0
 | |
|     aspect_ratio: 2.0
 | |
|     aspect_ratio: 3.0
 | |
|     flip: true
 | |
|     clip: false
 | |
|     variance: 0.1
 | |
|     variance: 0.1
 | |
|     variance: 0.2
 | |
|     variance: 0.2
 | |
|     offset: 0.5
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2_mbox_loc"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv15_2"
 | |
|   top: "conv15_2_mbox_loc"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 24
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2_mbox_loc_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv15_2_mbox_loc"
 | |
|   top: "conv15_2_mbox_loc_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2_mbox_loc_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv15_2_mbox_loc_perm"
 | |
|   top: "conv15_2_mbox_loc_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2_mbox_conf"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv15_2"
 | |
|   top: "conv15_2_mbox_conf"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 126
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2_mbox_conf_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv15_2_mbox_conf"
 | |
|   top: "conv15_2_mbox_conf_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2_mbox_conf_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv15_2_mbox_conf_perm"
 | |
|   top: "conv15_2_mbox_conf_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv15_2_mbox_priorbox"
 | |
|   type: "PriorBox"
 | |
|   bottom: "conv15_2"
 | |
|   bottom: "data"
 | |
|   top: "conv15_2_mbox_priorbox"
 | |
|   prior_box_param {
 | |
|     min_size: 195.0
 | |
|     max_size: 240.0
 | |
|     aspect_ratio: 2.0
 | |
|     aspect_ratio: 3.0
 | |
|     flip: true
 | |
|     clip: false
 | |
|     variance: 0.1
 | |
|     variance: 0.1
 | |
|     variance: 0.2
 | |
|     variance: 0.2
 | |
|     offset: 0.5
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2_mbox_loc"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv16_2"
 | |
|   top: "conv16_2_mbox_loc"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 24
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2_mbox_loc_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv16_2_mbox_loc"
 | |
|   top: "conv16_2_mbox_loc_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2_mbox_loc_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv16_2_mbox_loc_perm"
 | |
|   top: "conv16_2_mbox_loc_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2_mbox_conf"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv16_2"
 | |
|   top: "conv16_2_mbox_conf"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 126
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2_mbox_conf_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv16_2_mbox_conf"
 | |
|   top: "conv16_2_mbox_conf_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2_mbox_conf_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv16_2_mbox_conf_perm"
 | |
|   top: "conv16_2_mbox_conf_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv16_2_mbox_priorbox"
 | |
|   type: "PriorBox"
 | |
|   bottom: "conv16_2"
 | |
|   bottom: "data"
 | |
|   top: "conv16_2_mbox_priorbox"
 | |
|   prior_box_param {
 | |
|     min_size: 240.0
 | |
|     max_size: 285.0
 | |
|     aspect_ratio: 2.0
 | |
|     aspect_ratio: 3.0
 | |
|     flip: true
 | |
|     clip: false
 | |
|     variance: 0.1
 | |
|     variance: 0.1
 | |
|     variance: 0.2
 | |
|     variance: 0.2
 | |
|     offset: 0.5
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2_mbox_loc"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv17_2"
 | |
|   top: "conv17_2_mbox_loc"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 24
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2_mbox_loc_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv17_2_mbox_loc"
 | |
|   top: "conv17_2_mbox_loc_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2_mbox_loc_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv17_2_mbox_loc_perm"
 | |
|   top: "conv17_2_mbox_loc_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2_mbox_conf"
 | |
|   type: "Convolution"
 | |
|   bottom: "conv17_2"
 | |
|   top: "conv17_2_mbox_conf"
 | |
|   param {
 | |
|     lr_mult: 1.0
 | |
|     decay_mult: 1.0
 | |
|   }
 | |
|   param {
 | |
|     lr_mult: 2.0
 | |
|     decay_mult: 0.0
 | |
|   }
 | |
|   convolution_param {
 | |
|     num_output: 126
 | |
|     kernel_size: 1
 | |
|     weight_filler {
 | |
|       type: "msra"
 | |
|     }
 | |
|     bias_filler {
 | |
|       type: "constant"
 | |
|       value: 0.0
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2_mbox_conf_perm"
 | |
|   type: "Permute"
 | |
|   bottom: "conv17_2_mbox_conf"
 | |
|   top: "conv17_2_mbox_conf_perm"
 | |
|   permute_param {
 | |
|     order: 0
 | |
|     order: 2
 | |
|     order: 3
 | |
|     order: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2_mbox_conf_flat"
 | |
|   type: "Flatten"
 | |
|   bottom: "conv17_2_mbox_conf_perm"
 | |
|   top: "conv17_2_mbox_conf_flat"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "conv17_2_mbox_priorbox"
 | |
|   type: "PriorBox"
 | |
|   bottom: "conv17_2"
 | |
|   bottom: "data"
 | |
|   top: "conv17_2_mbox_priorbox"
 | |
|   prior_box_param {
 | |
|     min_size: 285.0
 | |
|     max_size: 300.0
 | |
|     aspect_ratio: 2.0
 | |
|     aspect_ratio: 3.0
 | |
|     flip: true
 | |
|     clip: false
 | |
|     variance: 0.1
 | |
|     variance: 0.1
 | |
|     variance: 0.2
 | |
|     variance: 0.2
 | |
|     offset: 0.5
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "mbox_loc"
 | |
|   type: "Concat"
 | |
|   bottom: "conv11_mbox_loc_flat"
 | |
|   bottom: "conv13_mbox_loc_flat"
 | |
|   bottom: "conv14_2_mbox_loc_flat"
 | |
|   bottom: "conv15_2_mbox_loc_flat"
 | |
|   bottom: "conv16_2_mbox_loc_flat"
 | |
|   bottom: "conv17_2_mbox_loc_flat"
 | |
|   top: "mbox_loc"
 | |
|   concat_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "mbox_conf"
 | |
|   type: "Concat"
 | |
|   bottom: "conv11_mbox_conf_flat"
 | |
|   bottom: "conv13_mbox_conf_flat"
 | |
|   bottom: "conv14_2_mbox_conf_flat"
 | |
|   bottom: "conv15_2_mbox_conf_flat"
 | |
|   bottom: "conv16_2_mbox_conf_flat"
 | |
|   bottom: "conv17_2_mbox_conf_flat"
 | |
|   top: "mbox_conf"
 | |
|   concat_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "mbox_priorbox"
 | |
|   type: "Concat"
 | |
|   bottom: "conv11_mbox_priorbox"
 | |
|   bottom: "conv13_mbox_priorbox"
 | |
|   bottom: "conv14_2_mbox_priorbox"
 | |
|   bottom: "conv15_2_mbox_priorbox"
 | |
|   bottom: "conv16_2_mbox_priorbox"
 | |
|   bottom: "conv17_2_mbox_priorbox"
 | |
|   top: "mbox_priorbox"
 | |
|   concat_param {
 | |
|     axis: 2
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "mbox_conf_reshape"
 | |
|   type: "Reshape"
 | |
|   bottom: "mbox_conf"
 | |
|   top: "mbox_conf_reshape"
 | |
|   reshape_param {
 | |
|     shape {
 | |
|       dim: 0
 | |
|       dim: -1
 | |
|       dim: 21
 | |
|     }
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "mbox_conf_softmax"
 | |
|   type: "Softmax"
 | |
|   bottom: "mbox_conf_reshape"
 | |
|   top: "mbox_conf_softmax"
 | |
|   softmax_param {
 | |
|     axis: 2
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "mbox_conf_flatten"
 | |
|   type: "Flatten"
 | |
|   bottom: "mbox_conf_softmax"
 | |
|   top: "mbox_conf_flatten"
 | |
|   flatten_param {
 | |
|     axis: 1
 | |
|   }
 | |
| }
 | |
| layer {
 | |
|   name: "detection_out"
 | |
|   type: "DetectionOutput"
 | |
|   bottom: "mbox_loc"
 | |
|   bottom: "mbox_conf_flatten"
 | |
|   bottom: "mbox_priorbox"
 | |
|   top: "detection_out"
 | |
|   include {
 | |
|     phase: TEST
 | |
|   }
 | |
|   detection_output_param {
 | |
|     num_classes: 21
 | |
|     share_location: true
 | |
|     background_label_id: 0
 | |
|     nms_param {
 | |
|       nms_threshold: 0.45
 | |
|       top_k: 100
 | |
|     }
 | |
|     code_type: CENTER_SIZE
 | |
|     keep_top_k: 100
 | |
|     confidence_threshold: 0.25
 | |
|   }
 | |
| }
 |