added main project files

This commit is contained in:
Sai Subhakar T 2020-08-18 21:18:38 +02:00 committed by GitHub
parent e313324b9d
commit d35d69148c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 2507 additions and 0 deletions

8
Log.csv Normal file
View File

@ -0,0 +1,8 @@
"End Time","In","Out","Total Inside"
"2020-08-18 20:46:03.573500","1","1","4"
"","2","2",""
"","3","3",""
"","4","",""
"","5","",""
"","6","",""
"","7","",""
1 End Time In Out Total Inside
2 2020-08-18 20:46:03.573500 1 1 4
3 2 2
4 3 3
5 4
6 5
7 6
8 7

368
Run.py Normal file
View File

@ -0,0 +1,368 @@
from mylib.centroidtracker import CentroidTracker
from mylib.trackableobject import TrackableObject
from imutils.video import VideoStream
from imutils.video import FPS
from mylib.mailer import Mailer
import time, schedule, csv
import numpy as np
import argparse
import imutils
import time
import dlib
import cv2, datetime
from itertools import zip_longest
t0 = time.time()
#===============================================================================
""" Optional features """
#===============================================================================
# Enter mail below to receive real-time email alerts
# e.g., 'email@gmail.com'
MAIL = ''
# ON/OFF for mail feature. Enter True to turn on the email alert feature.
ALERT = False
# Simple log to log the counting data
Log = False
# Auto run/Schedule the software to run at your desired time
Scheduler = False
# Auto stop the software after certain a time/hours
Timer = False
#===============================================================================
#===============================================================================
def run():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=False,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-i", "--input", type=str,
help="path to optional input video file")
ap.add_argument("-o", "--output", type=str,
help="path to optional output video file")
# confidence default 0.4
ap.add_argument("-c", "--confidence", type=float, default=0.4,
help="minimum probability to filter weak detections")
ap.add_argument("-s", "--skip-frames", type=int, default=30,
help="# of skip frames between detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
# load our serialized model from disk
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# if a video path was not supplied, grab a reference to the ip camera
if not args.get("input", False):
print("[INFO] Starting the live stream..")
# the following is an ip camera url example
# just enter your camera url and it should work
url = 'http://191.138.0.100:8040/video'
vs = VideoStream(url).start()
time.sleep(2.0)
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["input"])
# initialize the video writer (we'll instantiate later if need be)
writer = None
# initialize the frame dimensions (we'll set them as soon as we read
# the first frame from the video)
W = None
H = None
# instantiate our centroid tracker, then initialize a list to store
# each of our dlib correlation trackers, followed by a dictionary to
# map each unique object ID to a TrackableObject
ct = CentroidTracker(maxDisappeared=40, maxDistance=50)
trackers = []
trackableObjects = {}
# initialize the total number of frames processed thus far, along
# with the total number of objects that have moved either up or down
totalFrames = 0
totalDown = 0
totalUp = 0
x = []
empty=[]
empty1=[]
# start the frames per second throughput estimator
fps = FPS().start()
# loop over frames from the video stream
while True:
# grab the next frame and handle if we are reading from either
# VideoCapture or VideoStream
frame = vs.read()
frame = frame[1] if args.get("input", False) else frame
# if we are viewing a video and we did not grab a frame then we
# have reached the end of the video
if args["input"] is not None and frame is None:
break
# resize the frame to have a maximum width of 500 pixels (the
# less data we have, the faster we can process it), then convert
# the frame from BGR to RGB for dlib
frame = imutils.resize(frame, width=500)
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# if the frame dimensions are empty, set them
if W is None or H is None:
(H, W) = frame.shape[:2]
# if we are supposed to be writing a video to disk, initialize
# the writer
if args["output"] is not None and writer is None:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 30,
(W, H), True)
# initialize the current status along with our list of bounding
# box rectangles returned by either (1) our object detector or
# (2) the correlation trackers
status = "Waiting"
rects = []
# check to see if we should run a more computationally expensive
# object detection method to aid our tracker
if totalFrames % args["skip_frames"] == 0:
# set the status and initialize our new set of object trackers
status = "Detecting"
trackers = []
# convert the frame to a blob and pass the blob through the
# network and obtain the detections
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated
# with the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by requiring a minimum
# confidence
if confidence > args["confidence"]:
# extract the index of the class label from the
# detections list
idx = int(detections[0, 0, i, 1])
# if the class label is not a person, ignore it
if CLASSES[idx] != "person":
continue
# compute the (x, y)-coordinates of the bounding box
# for the object
box = detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = box.astype("int")
# construct a dlib rectangle object from the bounding
# box coordinates and then start the dlib correlation
# tracker
tracker = dlib.correlation_tracker()
rect = dlib.rectangle(startX, startY, endX, endY)
tracker.start_track(rgb, rect)
# add the tracker to our list of trackers so we can
# utilize it during skip frames
trackers.append(tracker)
# otherwise, we should utilize our object *trackers* rather than
# object *detectors* to obtain a higher frame processing throughput
else:
# loop over the trackers
for tracker in trackers:
# set the status of our system to be 'tracking' rather
# than 'waiting' or 'detecting'
status = "Tracking"
# update the tracker and grab the updated position
tracker.update(rgb)
pos = tracker.get_position()
# unpack the position object
startX = int(pos.left())
startY = int(pos.top())
endX = int(pos.right())
endY = int(pos.bottom())
# add the bounding box coordinates to the rectangles list
rects.append((startX, startY, endX, endY))
# draw a horizontal line in the center of the frame -- once an
# object crosses this line we will determine whether they were
# moving 'up' or 'down'
#cv2.line(frame, (0, H // 2), (W, H // 2), (0, 255, 255), 2)
cv2.line(frame, (0, H // 2), (W, H // 2), (255, 255, 255), 3)
cv2.putText(frame, "-Prediction border - Entrance-", (10, H - ((i * 20) + 200)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1)
# use the centroid tracker to associate the (1) old object
# centroids with (2) the newly computed object centroids
objects = ct.update(rects)
# loop over the tracked objects
for (objectID, centroid) in objects.items():
# check to see if a trackable object exists for the current
# object ID
to = trackableObjects.get(objectID, None)
# if there is no existing trackable object, create one
if to is None:
to = TrackableObject(objectID, centroid)
# otherwise, there is a trackable object so we can utilize it
# to determine direction
else:
# the difference between the y-coordinate of the *current*
# centroid and the mean of *previous* centroids will tell
# us in which direction the object is moving (negative for
# 'up' and positive for 'down')
y = [c[1] for c in to.centroids]
direction = centroid[1] - np.mean(y)
to.centroids.append(centroid)
# check to see if the object has been counted or not
if not to.counted:
# if the direction is negative (indicating the object
# is moving up) AND the centroid is above the center
# line, count the object
if direction < 0 and centroid[1] < H // 2:
totalUp += 1
empty.append(totalUp)
to.counted = True
# if the direction is positive (indicating the object
# is moving down) AND the centroid is below the
# center line, count the object
elif direction > 0 and centroid[1] > H // 2:
totalDown += 1
empty1.append(totalDown)
#print(empty1[-1])
x = []
# compute the sum of total people inside
x.append(len(empty1)-len(empty))
#print("Total people inside:", x)
# Optimise number below: 10, 50, 100, etc., indicate the max. people inside limit
# if the limit exceeds, send an email alert
people_limit = 10
if sum(x) == people_limit:
if ALERT:
print("[INFO] Sending email alert..")
Mailer().send(MAIL)
print("[INFO] Alert sent")
to.counted = True
# store the trackable object in our dictionary
trackableObjects[objectID] = to
# draw both the ID of the object and the centroid of the
# object on the output frame
text = "ID {}".format(objectID)
cv2.putText(frame, text, (centroid[0] - 10, centroid[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.circle(frame, (centroid[0], centroid[1]), 4, (255, 255, 255), -1)
# construct a tuple of information we will be displaying on the
info = [
("Up", totalUp),
("Down", totalDown),
("Status", status),
]
info2 = [
("Total people inside", x),
]
# display the output
for (i, (k, v)) in enumerate(info):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (10, H - ((i * 20) + 20)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
for (i, (k, v)) in enumerate(info2):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (270, H - ((i * 20) + 60)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# Simple log to save data at end of the day
if Log:
datetimee = [datetime.datetime.now()]
d = [datetimee, empty1, empty, x]
export_data = zip_longest(*d, fillvalue = '')
with open('Log.csv', 'w', newline='') as myfile:
wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
wr.writerow(("End Time", "In", "Out", "Total Inside"))
wr.writerows(export_data)
# show the output frame
cv2.imshow("Real-Time Monitoring/Analysis Window", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# increment the total number of frames processed thus far and
# then update the FPS counter
totalFrames += 1
fps.update()
if Timer:
# Automatic timer to stop the live stream. Set to 8 hours (28800s).
t1 = time.time()
num_seconds=(t1-t0)
if num_seconds > 28800:
break
# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# if we are not using a video file, stop the camera video stream
if not args.get("input", False):
vs.stop()
# otherwise, release the video file pointer
else:
vs.release()
# close any open windows
cv2.destroyAllWindows()
##learn more about different schedules here: https://pypi.org/project/schedule/
if Scheduler:
##Runs for every 1 second
#schedule.every(1).seconds.do(run)
##Runs at every day (9:00 am). You can change it.
schedule.every().day.at("9:00").do(run)
while 1:
schedule.run_pending()
else:
run()

Binary file not shown.

File diff suppressed because it is too large Load Diff

163
mylib/centroidtracker.py Normal file
View File

@ -0,0 +1,163 @@
# import the necessary packages
from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
class CentroidTracker:
def __init__(self, maxDisappeared=50, maxDistance=50):
# initialize the next unique object ID along with two ordered
# dictionaries used to keep track of mapping a given object
# ID to its centroid and number of consecutive frames it has
# been marked as "disappeared", respectively
self.nextObjectID = 0
self.objects = OrderedDict()
self.disappeared = OrderedDict()
# store the number of maximum consecutive frames a given
# object is allowed to be marked as "disappeared" until we
# need to deregister the object from tracking
self.maxDisappeared = maxDisappeared
# store the maximum distance between centroids to associate
# an object -- if the distance is larger than this maximum
# distance we'll start to mark the object as "disappeared"
self.maxDistance = maxDistance
def register(self, centroid):
# when registering an object we use the next available object
# ID to store the centroid
self.objects[self.nextObjectID] = centroid
self.disappeared[self.nextObjectID] = 0
self.nextObjectID += 1
def deregister(self, objectID):
# to deregister an object ID we delete the object ID from
# both of our respective dictionaries
del self.objects[objectID]
del self.disappeared[objectID]
def update(self, rects):
# check to see if the list of input bounding box rectangles
# is empty
if len(rects) == 0:
# loop over any existing tracked objects and mark them
# as disappeared
for objectID in list(self.disappeared.keys()):
self.disappeared[objectID] += 1
# if we have reached a maximum number of consecutive
# frames where a given object has been marked as
# missing, deregister it
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
# return early as there are no centroids or tracking info
# to update
return self.objects
# initialize an array of input centroids for the current frame
inputCentroids = np.zeros((len(rects), 2), dtype="int")
# loop over the bounding box rectangles
for (i, (startX, startY, endX, endY)) in enumerate(rects):
# use the bounding box coordinates to derive the centroid
cX = int((startX + endX) / 2.0)
cY = int((startY + endY) / 2.0)
inputCentroids[i] = (cX, cY)
# if we are currently not tracking any objects take the input
# centroids and register each of them
if len(self.objects) == 0:
for i in range(0, len(inputCentroids)):
self.register(inputCentroids[i])
# otherwise, are are currently tracking objects so we need to
# try to match the input centroids to existing object
# centroids
else:
# grab the set of object IDs and corresponding centroids
objectIDs = list(self.objects.keys())
objectCentroids = list(self.objects.values())
# compute the distance between each pair of object
# centroids and input centroids, respectively -- our
# goal will be to match an input centroid to an existing
# object centroid
D = dist.cdist(np.array(objectCentroids), inputCentroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value as at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# if the distance between centroids is greater than
# the maximum distance, do not associate the two
# centroids to the same object
if D[row, col] > self.maxDistance:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = objectIDs[row]
self.objects[objectID] = inputCentroids[col]
self.disappeared[objectID] = 0
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute both the row and column index we have NOT yet
# examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
# loop over the unused row indexes
for row in unusedRows:
# grab the object ID for the corresponding row
# index and increment the disappeared counter
objectID = objectIDs[row]
self.disappeared[objectID] += 1
# check to see if the number of consecutive
# frames the object has been marked "disappeared"
# for warrants deregistering the object
if self.disappeared[objectID] > self.maxDisappeared:
self.deregister(objectID)
# otherwise, if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
for col in unusedCols:
self.register(inputCentroids[col])
# return the set of trackable objects
return self.objects

31
mylib/mailer.py Normal file
View File

@ -0,0 +1,31 @@
import smtplib, ssl
class Mailer:
"""
This script initiaties the email alert function.
"""
def __init__(self):
# Enter your email below. This email will be used to send alerts.
# E.g., "email@gmail.com"
self.EMAIL = ""
# Enter the email password below. Note that the password varies if you have secured
# 2 step verification turned on. You can refer the links below and create an application specific password.
# Google mail has a guide here: https://myaccount.google.com/lesssecureapps
# For 2 step verified accounts: https://support.google.com/accounts/answer/185833
self.PASS = ""
self.PORT = 465
self.server = smtplib.SMTP_SSL('smtp.gmail.com', self.PORT)
def send(self, mail):
self.server = smtplib.SMTP_SSL('smtp.gmail.com', self.PORT)
self.server.login(self.EMAIL, self.PASS)
# message to be sent
SUBJECT = 'ALERT!'
TEXT = f'People limit exceeded in your building!'
message = 'Subject: {}\n\n{}'.format(SUBJECT, TEXT)
# sending the mail
self.server.sendmail(self.EMAIL, mail, message)
self.server.quit()

10
mylib/trackableobject.py Normal file
View File

@ -0,0 +1,10 @@
class TrackableObject:
def __init__(self, objectID, centroid):
# store the object ID, then initialize a list of centroids
# using the current centroid
self.objectID = objectID
self.centroids = [centroid]
# initialize a boolean used to indicate if the object has
# already been counted or not
self.counted = False

15
requirements.txt Normal file
View File

@ -0,0 +1,15 @@
smtplib
ssl
time
schedule
csv
numpy
argparse
imutils
time
dlib
cv2
datetime
itertools
scipy
collections

BIN
videos/example_01.mp4 Normal file

Binary file not shown.