diff --git a/README.md b/README.md index f40bd68..3b577a2 100644 --- a/README.md +++ b/README.md @@ -40,16 +40,16 @@ People Counting in Real-Time using live video stream/IP camera in OpenCV. - Then an unique ID is assigned to every particular object deteced, for tracking over the sequence of frames. ## Running Inference -- Install all the required Python dependencies: +- First up, install all the required Python dependencies: ``` pip install -r requirements.txt ``` +> The requirements will be updated timely, but note that there can always be verion conflicts between the dependenceies themselves and other factors like OS, hardware etc. - To run inference on a test video file, head into the directory/use the command: ``` python run.py --prototxt mobilenet_ssd/MobileNetSSD_deploy.prototxt --model mobilenet_ssd/MobileNetSSD_deploy.caffemodel --input videos/example_01.mp4 ``` -> To run inference on an IP camera: -- Setup your camera url in 'mylib/config.py': +- To run inference on an IP camera, first setup your camera url in 'mylib/config.py': ``` # Enter the ip camera url (e.g., url = 'http://191.138.0.100:8040/video') diff --git a/requirements.txt b/requirements.txt index 8c4834e..60df5a2 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,7 +1,8 @@ -schedule==0.6.0 -numpy==1.19.2 +schedule==1.1.0 +numpy==1.22.3 argparse==1.4.0 -imutils==0.5.3 +imutils==0.5.4 dlib==19.18.0 -opencv-python==4.2.0.32 -scipy==1.4.1 +opencv-python==4.5.5.64 +scipy==1.8.0 +cmake==3.22.5